Cosmological interpretation for the stochastic signal in pulsar timing arrays

Zu-Cheng Chen (陈祖成)

Done with Yan-Chen Bi, Qing-Guo Huang, Shou-Long Li, Lang Liu, Puxun Wu, Yu-Mei Wu, Hongwei Yu

Based on 2307.00722 (SCPMA), 2307.03141 (SCPMA), 2312.01824 (PRD)

Hunan Normal University

2024-07-02 @ Jingzhou: Gravitational Wave Astrophysics Conference 2024

GWAC 2024 第五届引力波天体物理研讨会 暨NSFC引力波天文学创新群体项目交流会

Cosmological sources

Outline

SMBHB

- Cosmological sources
 - Phase transition
 - Cosmic string
 - Scalar-induced GW

Introduction •000000

SMBHB 00000 Cosmological sources

The Nobel Prize in Physics 2017

© Nobel Media. III. N Elmehed Rainer Weiss Prize share: 1/2

© Nobel Media. III. N Elmehed Barry C. Barish Prize share: 1/4

© Nobel Media. III. Elmehed Kip S. Thorne Prize share: 1/4

- New era of GW astronomy
- Multi-messenger astronomy

00000	00000	0000000	
Pulsar and pulsa	r timing array (PT	A)	
RADIATION ECMO	PARAO/AUL/NSE		Creift: D Champion

- Pulsars are highly magnetized, rotating neutron stars that emit regular pulses of electromagnetic radiation.
- GWs can cause tiny distortion in spacetime inducing variations in the time of arrivals (ToAs).
- A PTA pursues to detect nHz GWs by regularly monitoring ToAs from an array of the ultra rotational stable millisecond pulsars.

Introduction

Introduction	SMBHB	Cosmological sources
0000000	00000	00000000

Timing residual induced by a GWB

$$\begin{aligned} z(t,\hat{\Omega}) &= \frac{\nu_e - \nu_p}{\nu_p} \\ &= \frac{\hat{p}^i \hat{p}^j}{2(1 + \hat{\Omega} \cdot \hat{p})} \left[h_{ij} \left(t_p, \hat{\Omega} \right) - h_{ij} \left(t_e, \hat{\Omega} \right) \right] \\ z(t) &= \int_{S^2} d\hat{\Omega} \, z(t, \hat{\Omega}) \end{aligned}$$

• Timing residual in frequency-domain

$$\tilde{r}(f,\hat{\Omega}) = \frac{1}{2\pi i f} \left(1 - e^{-2\pi i f L(1+\hat{\Omega}\cdot\hat{p})} \right) \times \sum_{A} h_A(f,\hat{\Omega}) F^A(\hat{\Omega})$$

Antenna pattern

$$F^{A}(\hat{\Omega}) = e^{A}_{ij}(\hat{\Omega}) \frac{\hat{p}^{i}\hat{p}^{j}}{2(1+\hat{\Omega}\cdot\hat{p})}$$

Detecting a GWB with PTA

Introduction

• Assume the GWB is isotropic, unpolarized, and stationary

$$\left\langle h_A^*(f,\hat{\Omega})h_{A'}(f',\hat{\Omega}')\right\rangle = \frac{3H_0^2}{32\pi^3 f^3} \delta^2(\hat{\Omega},\hat{\Omega}')\delta_{AA'}\delta(f-f')\Omega_{\rm gw}(f)$$

Spectrum of GWB

$$\Omega_{\rm gw}(f) \equiv \frac{1}{\rho_{\rm crit}} \frac{d\rho_{\rm gw}}{d\ln f}, \qquad \rho_{\rm crit} \ = \frac{3H_0^2}{8\pi}, \quad \rho_{\rm gw} = \frac{1}{32\pi} \left< \dot{h}_{ij}(t,\vec{x}) \dot{h}^{ij}(t,\vec{x}) \right>,$$

• Cross-power spectral density

$$S_{IJ} = \left\langle \tilde{r}_I^*(f) \tilde{r}_J(f') \right\rangle = \frac{1}{\gamma} \frac{H_0^2}{16\pi^4 f^5} \delta(f - f') \Gamma_{IJ}(f, L_I, L_J, \xi) \,\Omega_{\rm gw}(f)$$

• Overlap reduction function (ORF) is function of f, L_I, L_J, ξ

$$\Gamma_{IJ} = \gamma \sum_{A} \int d\hat{\Omega} \left(e^{2\pi i f L_{I} \left(1 + \hat{\Omega} \cdot \hat{p}_{I} \right)} - 1 \right) \times \left(e^{-2\pi i f L_{J} \left(1 + \hat{\Omega} \cdot \hat{p}_{J} \right)} - 1 \right) F_{I}^{A}(\hat{\Omega}) F_{J}^{A}(\hat{\Omega})$$

• Hellings-Downs correlations for $fL \gg 1$ (short-wavelength approximation)

$$\Gamma_{IJ} = \frac{3}{2} \left(\frac{1 - \cos \xi}{2} \right) \ln \frac{1 - \cos \xi}{2} - \frac{1 - \cos \xi}{8} + \frac{1}{2}$$

Cosmological sources

Summary O

PTAs in operation

Introc	luction
000	0000

Cosmological sources

Summary O

Evidence for a GWB in PTA data sets

NANOGrav, 2306.16213 (ApJL); PPTA, 2306.16215 (ApJL)

EPTA+InPTA, 2306.16214 (A&A); CPTA, 2306.16216 (RAA)

Cosmological Interpretation for the PTA Signal

Int	Ъс			
	0	ЭC	00	

GWB from SMBHB

(a) plus mode

Hellings-Downs curve

$$\begin{split} \Gamma^{\rm TT}_{ab} &= \; \frac{1}{2} \left[1 + \delta_{ab} + 3 \kappa_{ab} \left(\ln \kappa_{\rm ab} - \frac{1}{6} \right) \right] \\ \kappa_{ab} &\equiv \; (1 - \cos \xi_{ab})/2 \end{split}$$

Zu-Cheng Chen (陈祖成)

NANOGrav, 2306.16213 (ApJL); PPTA, 2306.16215 (ApJL) EPTA+InPTA, 2306.16214 (A&A); CPTA, 2306.16216 (RAA)

Zu-Cheng Chen (陈祖成)

Cosmological Interpretation for the PTA Signal

Cosmological sources

Comparing results from different PTAs

Figure 1. Left: free spectral posteriors for each PTA showing the measured HD-correlated GWB power in several frequency bins under no spectral shape assumption. Each PTA used a different Fourier basis set by their own maximum observing time. The semitransparent gray lines are 100 samples from the joint 2D power-law posterior distribution, showing the spread of power-law models that are consistent with all of the PTA's data. Right: 2D posterior for HD-correlated power-law grarmeters. Contours show 86%, 95%, and 97%, of the posterior mass. The vertical dotted line is at $\gamma = 13/3$.

IPTA, 2309.00693 (ApJ)

0000000	00000	00000000	
Astro-informed	model from		
Astro-informed	model nom		

• A large eccentricity when GWs begin to dominate the SMBHB evolution.

Yan-Chen Bi, Yu-Mei Wu, ZCC, Qing-Guo Huang, 2307.00722 (SCPMA)

see also talks from Shao-Jiang Wang and Qing-Juan Yu

Zu-Cheng Chen (陈祖成)

Cosmological Interpretation for the PTA Signal

Introd	
000	0000

Cosmological sources

Astro-informed formation model

• The SGWB from SMBHBs should be detected by LISA, Taiji and TianQin.

Yan-Chen Bi, Yu-Mei Wu, ZCC, Qing-Guo Huang, 2307.00722 (SCPMA)

Cosmological sources

Summary O

Cosmological sources

Phase transition

Cosmic string

Domain wall

Scalar-induced GW

Zu-Cheng Chen (陈祖成)

Introduction 0000000 00000

Cosmological sources

o O

Overview of PTA constraints

TABLE II. Bayes factors (BFs) of the power-law (PL), first order phase transition (PT), domain wall (DW), and cosmic string (CS) models compared to the <u>SMBH</u>Bs model.

• Domain wall model is strongly disfavored.

Yu-Mei Wu, ZCC, Qing-Guo Huang, 2307.03141 (SCPMA)

Zu-Cheng Chen (陈祖成)

Introduction 0000000 00000

Cosmological sources

Summary O

Phase transition

$\label{eq:Bubble} \begin{array}{l} \mbox{Bubble collisions} + \mbox{Sound Wave} + \mbox{MHD turbulence} \\ \mbox{see also Shao-Jiang Wang's talk} \end{array}$

TABLE I. The ratio of the vacuum energy density α and critical temperature T_* from five holographical QCD-like models.

Model	QCD matter	Holographic QCD-like model	α	T_* (MeV)
S_1	Heavy static quarks with a zero chemical potential	Hard wall	13.5	122 [133,144]
S_2	Heavy static quarks with a zero chemical potential	Soft wall	4.27	191 [133,144]
S_3	Quarks with a finite chemical potential	Hard wall	32.2	112 [134]
S_4	Quarks with a finite chemical potential	Soft wall	4.56	192 [134]
S_5	Pure gluons	Quenched dynamical holographic QCD	0.611	255 [135]

Zu-Cheng Chen (陈祖成)

log10 a

-9

-8

log₁₀ (f/Hz)

-7

-6

-5

-10

• PTA data prefer pure quark systems under the Jouguet detonations case.

log₁₀ (T_{*}/MeV)

ZCC, Shou-Long Li, Puxun Wu, Hongwei Yu, 2312.01824 (PRD)

18 / 23

Introduction 0000000 SMBHB

Cosmological sources

°

Cosmic String

 The intersection between cosmic strings can lead to reconnections and form loops, which will then decay due to relativistic oscillation and emit gravitational waves.

Zu-Cheng Chen (陈祖成)

uction 0000	SMBHB 00000	Cosmological sources ○○○○○●○○		
/ energy density spe	energy density spectrum of cosmic strings			
10 ⁻⁸ 10 ⁻³ G 10 ⁻¹⁰		$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $		

10-3

f(Hz)

10-5

• p is the reconnection probability:

10-9

- $\bullet \ p=1 \ {\rm for \ classical \ strings}$
- ${\ensuremath{\, \rm o}\,}\ p<1$ in the string-theory-inspired models

 10^{-7}

10-11

10⁻¹² 10⁻¹¹

GV

 10^{-1}

101

103

 $G\mu = 10^{-14}$

PTA band

Cosmological sources

Summary O

Scalar-induced GW: see Lang Liu's talk

Non-Gaussianity of curvature perturbations

Lang Liu, ZCC, Qing-Guo Huang, 2307.01102 (PRDL)

• Equation of state and sound speed of the early Universe

Lang Liu, **ZCC**, Qing-Guo Huang, 2307.14911 (JCAP) Lang Liu, You Wu, **ZCC**, 2310.16500 (JCAP)

• Speed of GW

ZCC, Jun Li, Lang Liu, Zhu Yi, 2401.09818 (PRDL)

• Distinguish the adiabatic and isocurvature fluctuations

ZCC, Lang Liu, 2402.16781

Sound speed resonance

Jia-Heng Jin, ZCC, Zhu Yi, Zhi-Qiang You, Lang Liu, 2307.08687 (JCAP)

$$\left\langle \tilde{r}_{I}^{*}(f)\tilde{r}_{J}(f')\right\rangle = \frac{1}{\gamma} \frac{H_{0}^{2}}{16\pi^{4}f^{5}} \delta(f-f') \Gamma_{IJ}(f,L_{I},L_{J},\boldsymbol{\xi}) \Omega_{\mathrm{gw}}(f)$$

- PTAs have been opening a new window at nHz frequencies.
- Cosmological implications:
 - Domain wall is strongly disfavored.
 - For PT, PTA data prefer pure quark systems under the Jouguet detonations case.
 - Strings in (super)strings theory are more likely to explain the PTA signal than classical field strings.

Thank you for your attention!