Constrain modified gravities with pulsar timing arrays

Zu-Cheng Chen (陈祖成)

Done with Yan-Chen Bi, Qing-Guo Huang, Jun Li, Lang Liu, Zhu Yi, Yu-Mei Wu

Based on 2310.08366 (PRDL); 2401.09818 (PRDL); 2101.06869 (SCPMA); 2310.11238 (PRD); 2302.00229 (PRD); 2310.07469 (CQG)

IPTA Science Meeting 2024

Haus Sexten, Sexten, Italy | 24 - 28 of June 2024

Introduction 000	Speed of GW 00000000	Alternative polarizations	Massive gravity 00	
Outline				

Introduction

2 Speed of GW

Alternative polarizations

Massive gravity

5 Summary

Introduction ●00	Speed of GW 00000000	Alternative polarizations	Massive gravity OO	
Detecting a G	WB with PTA			

• Assume the GWB is isotropic, unpolarized, and stationary

$$\left\langle h_A^*(f,\hat{\Omega})h_{A'}(f',\hat{\Omega}')\right\rangle = \frac{3H_0^2}{32\pi^3 f^3} \delta^2(\hat{\Omega},\hat{\Omega}')\delta_{AA'}\delta(f-f')\Omega_{\rm gw}(f)$$

Spectrum of GWB

$$\Omega_{\rm gw}(f) \equiv \frac{1}{\rho_{\rm crit}} \frac{d\rho_{\rm gw}}{d\ln f}, \qquad \rho_{\rm crit} \ = \frac{3H_0^2}{8\pi}, \quad \rho_{\rm gw} = \frac{1}{32\pi} \left\langle \dot{h}_{ij}(t,\vec{x}) \dot{h}^{ij}(t,\vec{x}) \right\rangle,$$

• Cross-power spectral density

$$S_{IJ} = \left\langle \tilde{r}_I^*(f)\tilde{r}_J(f') \right\rangle = \frac{1}{\gamma} \frac{H_0^2}{16\pi^4 f^5} \delta\left(f - f'\right) \Gamma_{IJ}(f, L_I, L_J, \xi) \,\Omega_{\rm gw}(f)$$

• Overlap reduction function (ORF) is function of f, L_I, L_J, ξ

$$\Gamma_{IJ} = \gamma \sum_{A} \int d\hat{\Omega} \left(e^{2\pi i f L_{I} \left(1 + \hat{\Omega} \cdot \hat{p}_{I} \right)} - 1 \right) \times \left(e^{-2\pi i f L_{J} \left(1 + \hat{\Omega} \cdot \hat{p}_{J} \right)} - 1 \right) F_{I}^{A}(\hat{\Omega}) F_{J}^{A}(\hat{\Omega})$$

• Hellings-Downs correlations for $fL \gg 1$ (short-wavelength approximation)

$$\Gamma_{IJ} = \frac{3}{2} \left(\frac{1 - \cos \xi}{2} \right) \ln \frac{1 - \cos \xi}{2} - \frac{1 - \cos \xi}{8} + \frac{1}{2}$$

Introduction ○●○	Speed of GW 00000000	Alternative polarizations	Massive gravity OO	
Evidonco fo	r a CN/R in DTA	data coto		

NANOGrav, 2306.16213 (ApJL); PPTA, 2306.16215 (ApJL)

EPTA+InPTA, 2306.16214 (A&A); CPTA, 2306.16216 (RAA)

Introduction	Speed of GW 00000000	Alternative polarizations	Massive gravity OO	

SIGWs can explain the PTA signal.

Figure 2. Bayes factors for the model comparisons between the new-physics interpretations of the signal considered in this work and the interpretation in terms of SMBHBs alone. Blue points are for the new physics alone, and red points are for the new physics in combination with the SMBHB signal. We also plot the error bars of all Bayes factors, which we obtain following the bootstrapping method outlined in Section 3.2. In most cases, however, these error bars are small and not visible.

NANOGrav Collaboration, 2306.16219 (ApJL)

Introduction	Speed of GW	Alternative polarizations	Massive gravity	
000	●00000000	000000	OO	
Scalar-Induced	Gravitational W	aves (SIGWs)		

- Primordial perturbations can be generated by quantum fluctuations during inflation.
- Metric perturbation in Newtonian gauge

$$ds^{2} = a^{2} \left\{ -(1+2\phi)d\eta^{2} + \left[(1-2\phi)\delta_{ij} + \frac{h_{ij}}{2} \right] dx^{i} dx^{j} \right\},$$
 (1)

where $\phi\equiv\phi^{(1)}$ and $h_{ij}\equiv h_{ij}^{(2)}$ are the scalar and tensor perturbations, respectively.

 Primordial scalar perturbations can generate SIGWs, as well as primordial black holes (PBHs).

See also the talks from Fabrizio Rompineve, Guillem Domenech and Sonali Verma.

Introduction 000	Speed of GW ○●○○○○○○○	Alternative polarizations	Massive gravity OO	
Detecting	SIGW with PTA			

Chen Yuan, ZCC, Qing-Guo Huang, 1906.11549 (PRD Rapid Communications)

Constrain SIGWs with NANOGrav 11-yr data set

ZCC, Chen Yuan, Qing-Guo Huang, 1910.12239 (PRL) Question: Can we test gravity if the PTA signal is indeed from SIGWs?

Introduction 000	Speed of GW 000●00000	Alternative polarizations	Massive gravity OO	
Speed of GW				

• GW170817: $-3 \times 10^{-15} \le c_g - 1 \le 7 \times 10^{-16}$

LVK, 1710.05832 (PRL)

• GW speed c_g can be frequency dependent

Claudia de Rham, Scott Melville, 1806.09417 (PRL)

Introduction 000	Speed of GW 0000€0000	Alternative polarizations	Massive gravity 00	
Speed of S	IGW			

EoM

$$h_{\mathbf{k}}^{\prime\prime}(\eta) + 2\mathcal{H}h_{\mathbf{k}}^{\prime}(\eta) + c_{g}^{2}k^{2}h_{\mathbf{k}}(\eta) = 4S_{\mathbf{k}}(\eta).$$
 (2)

SIGW spectrum

$$\Omega_{\rm GW}(k) = \int_0^\infty \mathrm{d}v \int_{|1-v|}^{1+v} \mathrm{d}u \mathcal{T}(u, v, c_g) P_\zeta(vk) P_\zeta(uk).$$
(3)

• Transfer function

$$\mathcal{T}(u,v,c_g) = \frac{3\left[4v^2 - \left(v^2 - u^2 + 1\right)^2\right]^2 \left(v^2 + u^2 - 3c_g^2\right)^2}{1024v^8 u^8} \\ \times \left\{ \left[\left(v^2 + u^2 - 3c_g^2\right) \ln\left(\left| \frac{3c_g^2 - (v+u)^2}{3c_g^2 - (v-u)^2} \right| \right) - 4vu \right]^2 + \pi^2 \left(v^2 + u^2 - 3c_g^2\right)^2 \Theta(v + u - \sqrt{3}c_g) \right\}.$$
(4)

Jun Li, Guang-Hai Guo, 2312.04589

PE with NANOGrav 15-yr data set + PPTA DR3 + EPTA DR2

ZCC, Jun Li, Lang Liu, Zhu Yi, 2401.09818 (PRDL)

Introduction 000	Speed of GW 0000000●0	Alternative polarizations	Massive gravity OO	

Overlap reduction function (ORF)

Reginald Christian Bernardo, Kin-Wang Ng, 2208.12538 (PRD)

Reginald Christian Bernardo, Kin-Wang Ng, 2302.11796 (PRDL)

Yan-Chen Bi, Yu-Mei Wu, ZCC, Qing-Guo Huang, 2310.08366 (PRDL)

Constrain modified gravities with PTAs

Introduction 000	Speed of GW 00000000●	Alternative polarizations	Massive gravity OO	

PE with NANOGrav 15-yr data set

• $c_g \gtrsim 0.85$

• Still consistent with $c_g = 1$.

Yan-Chen Bi, Yu-Mei Wu, ZCC, Qing-Guo Huang, 2310.08366 (PRDL)

Introduction	Speed of GW	Alternative polarizations	Massive gravity	
000	00000000	●00000	00	
A.L	and and an taxa			

Alternative polarizations

Gravitational–Wave Polarization

- A general metric gravity theory in 4D spacetime can have 6 polarization modes.
- polarization tensors
 - TT (Tesnsor Transverse) predicted by GR

$$\begin{aligned} \epsilon_{ij}^+ &= \hat{m} \otimes \hat{m} - \hat{n} \otimes \hat{n}, \\ \epsilon_{ij}^\times &= \hat{m} \otimes \hat{n} + \hat{n} \otimes \hat{m} \end{aligned}$$

• ST (Scalar Transverse)

$$\epsilon^B_{ij} = \hat{m} \otimes \hat{m} + \hat{n} \otimes \hat{n}$$

• SL (Scalar Longitudinal)

$$\epsilon^L_{ij}=\hat{\Omega}\otimes\hat{\Omega}$$

• VL (Vector Longitudinal)

$$\begin{split} \epsilon^X_{ij} &= \hat{m} \otimes \hat{\Omega} + \hat{\Omega} \otimes \hat{m}, \\ \epsilon^Y_{ij} &= \hat{n} \otimes \hat{\Omega} + \hat{\Omega} \otimes \hat{n} \end{split}$$

Introduction	Speed of GW	Alternative polarizations	Massive gravity	
000	000000000	○●○○○○	OO	

Overlap reduction function (ORF)

Spatial correlations: $|\Gamma_{ST}| > |\Gamma_{TT}| > |\Gamma_{VL}| > |\Gamma_{SL}|$

ST is the easiest to detect among the four polarization modes.

Neil J. Cornish, Logan O'Beirne, Stephen R. Taylor, Nicolás Yunes, 1712.07132 (PRL)

Introduction 000	Speed of GW 000000000	Alternative polarizations	Massive gravity OO	

Evidence for the ST correlations in NANOGrav 12.5-yr data set

• Bayes factor compared to CRN model

ZCC, Chen Yuan, Qing-Guo Huang, 2101.06869 (SCPMA)

Model	TT	ST	VL	SL	ST+TT
BF	4.96(9)	107(7)	1.94(3)	0.373(5)	96(3)

- No significant evidence for TT/VL/SL modes;
- Strong Bayesian evidence for ST correlations;
- No TT correlations in addition to the ST mode;
- The significance of ST signal is reduced when removing pulsar J0030+0451; NANOGrav, 2109.14706 (ApJL)
- The origin of the ST signal need to be further investigated.

Introduction 000	Speed of GW 00000000	Alternative polarizations	Massive gravity OO	

Search for alternative polarizations in NANOGrav 15-yr data set

Bayes factor compared to the TT model

ZCC, Yu-Mei Wu, Yan-Chen Bi, Qing-Guo Huang, 2310.11238 (PRD)

Model	ST	VL	SL	GTb	TT + ST
BF	0.40(3)	0.12(2)	0.002(1)	3.9(3)	0.943(5)

- No significant evidence supporting or refuting the ST model over the TT model; see also NANOGrav, 2310.12138 (ApJL)
- VL and SL models are weakly and strongly disfavored, respectively.

Speed of GW

We also consider a general transverse (GT) ORF parameterized as

$$\Gamma_{ab}(f) = \frac{1}{8} \left(3 + 4\delta_{ab} + \cos\xi_{ab} \right) + \frac{\alpha}{2} k_{ab} \ln k_{ab}.$$
 (5)

ST: $\alpha = 0$ TT: $\alpha = 3$

prior of α : Uniform(-10, 10)

• Our analysis yields $\alpha=1.74^{+1.18}_{-1.41},$ thus excluding both the TT and ST models at the 90% CL.

ZCC, Yu-Mei Wu, Yan-Chen Bi, Qing-Guo Huang, 2310.11238 (PRD)

Introduction 000	Speed of GW 000000000	Alternative polarizations	Massive gravity ●O	

ORF for massive gravity

ORF is a function of graviton mass m_g , GW frequency f, and angular separation ξ .

Kejia Lee, Fredrick A. Jenet, Richard H. Price, Norbert Wex, Michael Kramer, 1008.2561 (ApJ)

Qiuyue Liang, Mark Trodden, 2108.05344 (PRD)

Yu-Mei Wu, ZCC, Qing-Guo Huang, 2302.00229 (PRD)

- It's challenging to distinguish the SGWB arises from massive gravity or massless gravity based solely on spatial correlations.
- The dispersion relation $\omega = \sqrt{m_{
 m g}^2 + |{f k}|^2}$ leads to

$$f_{\min} = \frac{m_g}{2\pi} \lesssim \frac{1}{T_{\text{obs}}} \Rightarrow m_g \lesssim 8.2 \times 10^{-24} \,\text{eV}$$

Yu-Mei Wu, ZCC, Yan-Chen Bi, Qing-Guo Huang, 2310.07469 (CQG)

Introduction 000	Speed of GW 00000000	Alternative polarizations	Massive gravity OO	Summary

Summary

PTAs are indispensable tools for testing modified gravity theories at nHz frequencies, including:

• Speed of GW: $c_q \gtrsim 0.85$

Yan-Chen Bi, Yu-Mei Wu, ZCC, Qing-Guo Huang, 2310.08366 (PRDL) ZCC, Jun Li, Lang Liu, Zhu Yi, 2401.09818 (PRDL)

- Alternative polarizations: TT and ST both seem to be disfavored; unknown noise?
 ZCC, Chen Yuan, Qing-Guo Huang, 2101.06869 (SCPMA)
 Yu-Mei Wu, ZCC, Qing-Guo Huang, 2108.10518 (ApJ)
 ZCC, Yu-Mei Wu, Qing-Guo Huang, 2109.00296 (CTP)
 ZCC, Yu-Mei Wu, Yan-Chen Bi, Qing-Guo Huang, 2310.11238 (PRD)
- Massive gravity: $m_g \lesssim 8.2 \times 10^{-24} \, \mathrm{eV}$

Yu-Mei Wu, ZCC, Qing-Guo Huang, 2302.00229 (PRD) Yu-Mei Wu, ZCC, Yan-Chen Bi, Qing-Guo Huang, 2310.07469 (CQG)

• • • •

Thank you for your attention!