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Pulsar and pulsar timing array (PTA)
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o Pulsars are highly magnetized, rotating neutron stars that emit regular pulses of
electromagnetic radiation.

@ GWs can cause tiny distortion in spacetime inducing variations in the time of
arrivals (ToAs).

@ A PTA pursues to detect nHz GWs by regularly monitoring ToAs from an array of
the ultra rotational stable millisecond pulsars.
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Timing residual induced by a GWB

@ Redshift
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@ Timing residual in frequency-domain
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o Antenna pattern
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Detecting a GWB with PTA

o Assume the GWB is isotropic, unpolarized, and stationary
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@ Spectrum of GWB
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Overlap reduction function (ORF) is function of f, Ly, L&
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Hellings & Downs correlations for fL >> 1 (short-wavelength approximation)
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PTAs in operation
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The IPTA
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IPTA: PPTA + EPTA + NANOGrav + InPTA
Observers: CPTA, MPTA
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The stochastic signal in PTAs (2023

NANOGrav 15-yr ¥ varied ]
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NANOGrav, 2306.16213 (ApJL); PPTA, 2306.16215 (ApJL)
EPTA+InPTA, 2306.16214 (A&A); CPTA, 2306.16216 (RAA)
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SIGWs can explain the PTA signal.

NANOGRAV 15-YEAR NEW-PHYSICS SIGNALS 9
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Figure 2. Bayes factors for the model comparisons between the new-physics interpretations of the signal considered in this

work and the interpretation in terms of SMBHBs alone. Blue points are for the new physics alone, and red points are for the
new physics in combination with the SMBHB signal. We also plot the error bars of all Bayes factors, which we obtain following
the bootstrapping method outlined in Section 3.2. In most cases, however, these error bars are small and not visible.

NANOGrav Collaboration, 2306.16219 (ApJL)
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Scalar-Induced Gravitational Waves (SIGWs)

@ Primordial perturbations can be generated by quantum fluctuations during
inflation.

@ Metric perturbation in Newtonian gauge

ds? = a? {7(1 +24)dn® + |(1 — 2¢)8;; + hﬂ dxidxﬂ'} , (1)

where ¢ = ¢(1) and hij = hg) are the scalar and tensor perturbations,

respectively.

o Primordial scalar perturbation can be the source of SIGWs, as well as primordial
black holes (PBHs).
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Detecting SIGW with PTA
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Chen Yuan, ZCC, Qing-Guo Huang, 1906.11549 (PRD Rapid Communications)
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Constrain SIGWs with NANOGrav 11-yr data set
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ZCC, Chen Yuan, Qing-Guo Huang, 1910.12239 (PRL)
Can we test gravity if the PTA signal is indeed from SIGW?
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Speed of GW
e GW170817: -3 x 1071 < ¢y —1 <7 x 10716
LVK, 1710.05832 (PRL)

@ cg4 can be frequency dependent
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Claudia de Rham, Scott Melville, 1806.09417 (PRL)
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Speed of SIGW
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@ Transfer function
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Jun Li, Guang-Hai Guo, 2312.04589
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PE with NANOGrav 15-yr data set + PPTA DR3 + EPTA DR2
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ZCC, Jun Li, Lang Liu, Zhu Yi, 2401.09818 (PRDL)
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@ ¢4 2 0.61 at a 95% Cl.

o Consistent with ¢4 = 1.
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Reginald Christian Bernardo, Kin-Wang Ng, 2208.12538, (PRD)
Reginald Christian Bernardo, Kin-Wang Ng, 2302.11796, (PRDL)

Yan-Chen Bi, Yu-Mei Wu, ZCC, Qing-Guo Huang, 2310.08366 (PRDL)
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PE with NANOGrav 15-yr data set

Probability density
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@ Still consistent with ¢; = 1.

Yan-Chen Bi, Yu-Mei Wu, ZCC, Qing-Guo Huang, 2310.08366 (PRDL)
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Alternative Polarizations

Gravitational-Wave Polarization
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ST is the easiest to detect among the four polarization modes.
Neil J. Cornish, Logan O'Beirne, Stephen R. Taylor, Nicolds Yunes, 1712.07132 (PRL)
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Evidence for the ST correlations in NANOGrav 12.5-yr data set

o Bayes factor zcc, chen vuan, Qing-Guo Huang, 2101.06869 (SCPMA)

TT ST VL  SL ST+TT
DE438(4.96(9) 107(7) 1.94(3) 0.373(5) 96(3)

@ Our results were reproduced ~ 8 months later by nvanocrav, 210014706 (ApL)

As shown in Fig. 10, the most favored Bayesian
model is a GWB with GW-like monopolar correlations
of Eq. (25) with a Bayes factor greater than 100. Addi-
tionally, as a cross-check, we have reproduced the results
of Chen et al. (2021). where a model with ST correla-
tions with a spectral index of 5, [ST]M3A[5], was com-
pared to a model without correlations and a spectral
index of 13/3, M2A[13/3]. We obtain a Bayes factor of

@ The significance of ST signal is reduced when removing pulsar J0030+0451.
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Search for alternative polarizations in NANOGrav 15-yr data set

@ Our paper appeared on arXiv one day prior to NANOGrav's. Both sets of results
are broadly consistent with each other.

@ Bayes factor zcc, vu-Mei Wu, Yan-Chen Bi, Qing-Guo Huang, 2310.11238 (PRD)

Model| ST VL SL  GTb TT + ST
BF [0.40(3) 0.12(2) 0.002(1) 3.9(3) 0.943(5)

o Official NANOGrav nanoGrav, 2310.12138 (ApJL)

Our Bayesian analyses show the Bayes factor for HD over
ST is ~2, and the Bayes factor for a model with both
correlations compared to a model with just HD is ~1. These
results are largely consistent with a similar study by Chen et al.
(2023), in which they searched NANOGrav’s 15 yr data set for
nontensorial GWBs _on_a_similar _timescale to the work
presented here. Taking the spectral parameter recovery into
account, as in Figure 3, we found each correlation, when fit for
individually, is in agreement with CURN. We also found more
informative logy A, and , recovery for HD than ST, and HD
parameters show better agreement with CURN spectral
parameters when correlations are included together. The
analyses in this Letter, as well as those in Bernardo & Ng
(2023c) and Chen et al. (2023), do not rule out the possibility
of ST correlations in our data. However, our analysis also
shows no statistical need for an additional stochastic process
with ST correlations.
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We also consider a parameterized transverse ORF as
1 a
Fab(f) = g (3 + 46ab + cos gab) + Ekab Inkgp. (5)
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o Our analysis yields a = 1.741%'}&, thus excluding both the TT and ST models at
the 90% CL.

ZCC, Yu-Mei Wu, Yan-Chen Bi, Qing-Guo Huang, 2310.11238 (PRD)
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Summary

PTAs are promising tools for testing modified gravity theories, including:

@ Speed of GW: ¢4 2 0.85
Yan-Chen Bi, Yu-Mei Wu, ZCC, Qing-Guo Huang, 2310.08366 (PRDL)
ZCC, Jun Li, Lang Liu, Zhu Yi, 2401.09818 (PRDL)

o Alternative polarizations: TT and ST both seem to be disfavored
ZCC, Chen Yuan, Qing-Guo Huang, 2101.06869 (SCPMA)
Yu-Mei Wu, ZCC, Qing-Guo Huang, 2108.10518 (ApJ)
ZCC, Yu-Mei Wu, Qing-Guo Huang, 2109.00296 (CTP)
ZCC, Yu-Mei Wu, Yan-Chen Bi, Qing-Guo Huang, 2310.11238 (PRD)

o Massive gravity: mg < 8.2 x 10724eV
Yu-Mei Wu, ZCC, Qing-Guo Huang, 2302.00229 (PRD)
Yu-Mei Wu, ZCC, Yan-Chen Bi, Qing-Guo Huang, 2310.07469 (CQG)
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Outlook

o IPTA DR3 will contain the timing data from approximately 115 pulsars spaning
more than 35 years of observations.

@ Testing modified gravity theories with the IPTA DR3 is underway.

The talk reflects my personal opinions and does not represent the official views of
PPTA or IPTA.

Thank you for your
attention!
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