Constraints on the nonstandard propagating GWs with GWTC-3

Zu-Cheng Chen (陈祖成)

湖南师范大学

2024-03-31 @ 北师珠: 第一届音频波段引力波天文学研讨会

Cosmological Gravity Theories

- Why modified gravities?
 - Cosmic acceleration
 - Dark matter substitute
 - • •
- Modify weak-field regime (large scales)
- Reduce to GR in strong-field regime by Chameleon/Vainshtein/Symmetron screen mechnisms
- Cosmological tests focus on GW propagation (not generation)

• Even if modification on gravity is a tiny effect, propagation can accumulate the effect because of long distance.

Ezquiaga, Zumalacárregui, Front.Astron.Space Sci. 5 (2018)

- Propagation equation is covariant, i.e. independent of GW sources and background spacetimes (NS, BH, supernova, pulsar, GWB etc.)
- EFT approach [PRD 97 (2018) 10, 104037]

$h_{ij}^{\prime\prime} + \underbrace{(2+\nu)}_{\text{damping}} \mathcal{H} h_i^\prime$	$c_j + \underbrace{c_g^2}_{\text{speed}} k^2 h_{ij} + \underbrace{m}_{\text{dispect}}$	$\sum_{\text{rsion}}^{2} a^{2}h_{ij} =$	oscilltio	γ_{ij} ns
gravity theory	ν	$c_{g}^{2} - 1$	m_g	Г
GR	0	0	0	0
extra-dim.	$(D-4)\left(1+\frac{1+z}{\mathcal{H}d_{\mathrm{L}}}\right)$	0	0	0
Horndeski	α_M	α_T	0	0
f(R)	$F'/\mathcal{H}F$	0	0	0
Einstein-aether	0	$c_{\sigma}/\left(1+c_{\sigma}\right)$	0	0
bimetric massive gravity	0	0	$m^2 f_1$	$m^2 f_1$

• Consider $\Gamma = 0$

$$h_{ij}^{\prime\prime} + \underbrace{(2+\nu)}_{\text{damping}} \mathcal{H}h_{ij}^{\prime} + \underbrace{c_g^2}_{\text{speed}} k^2 h_{ij} + \underbrace{m_g^2}_{\text{dispersion}} a^2 h_{ij} = 0$$
(2)

Modified waveform

$$h_{\rm GW} \sim h_{\rm GR} \underbrace{e^{-\frac{1}{2}\int \nu \mathcal{H} d\eta}}_{\text{Affects amplitude}} \underbrace{e^{ik\int \left(c_g^2 - 1 + a^2 m_g^2/k^2\right)^{1/2} d\eta}}_{\text{Affects phase}}$$
(3)

Bonds from GWs

- Bright siren GW170817 (z = 0.008): $-75.3 \le \nu \le 78.4$ [PRD 97 (2018) 10, 104038]
- GW170817: $-3 \times 10^{-15} \le c_g 1 \le 7 \times 10^{-16}$ [PRL 119 (2017) 16, 161101]
- GW170104: $m_q \leq 7.7 \times 10^{-23} \text{eV}$ [PRL 118(22):221101, 2017]

Question: Can we get a tighter constraint on ν ?

• Consider $m_g = \Gamma = 0$ and $c_g^2 = 1$

$$h_{ij}^{\prime\prime} + (2 + \nu)\mathcal{H}h_{ij}^{\prime} + k^2 h_{ij} = 0$$
(4)

Modified luminosity distance

$$d_{\rm GW} = (1+z)^{\nu/2} d_{\rm EM}$$
(5)

$$d_{\rm EM} = \frac{(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_{\rm m}(1+z')^3 + (1-\Omega_{\rm m})}} \tag{6}$$

ullet GWs measure the luminosity distance $d_{\rm GW}$ and redshifted masses $m_1^{\rm det},m_2^{\rm det}$

$$m_i = \frac{m_i^{\text{det}}}{1 + z \left(D_{\text{GW}}; H_0, \Omega_{\text{m}} \right)} \tag{7}$$

- Bright siren: infer z with EM counterparts, such as GW170817.
- Dark siren: infer z with galaxy catalogue

Spectral siren

Even in the absence of electromagnetic observations, GWs alone can probe the expansion rate with the help of population properties, such as

- the peak of the mass distribution;
- the lower/upper mass cut-off;
- redshift distribution.

图: Masses and distance (redshift) distribution from GWTC-3.

Spectral and bright sirens with GWTC-3 [ApJ 949 (2023) 2, 76]

$$\mathcal{L}(\mathbf{d}|\Lambda) \propto N_{\rm exp}^{N_{\rm obs}} e^{-N_{\rm exp}} \prod_{i=1}^{N_{\rm obs}} \frac{1}{\xi(\Lambda)} \left\langle \frac{\mathcal{R}_{\rm pop}(\theta|\Lambda)}{d_L^2(z)} \right\rangle$$
(8)

•
$$\mathbf{d} = (d_1, \dots, d_{N_{\mathrm{obs}}})$$
 are N_{obs} BBHs

• $\xi(\Phi)$ quantifies selection biases

$$\xi(\Lambda) = \int P_{\rm det}(\theta) \, p_{\rm pop}(\theta|\Lambda) \, \mathrm{d}\theta \approx \frac{1}{N_{\rm inj}} \sum_{j=1}^{N_{\rm found}} \frac{p_{\rm pop}(\theta_j|\Lambda)}{p_{\rm draw}(\theta_j)}$$

where $N_{\rm inj}$ is the number of injections, $N_{\rm found}$ is the number of injections that are detected, and $p_{\rm draw}\,$ is the probability distribution from which the injections are drawn.

• $\mathcal{L}(d_i|\theta)$ is single event likelihood.

$$h_{ij}^{\prime\prime} + (2 + \nu)\mathcal{H}h_{ij}^{\prime} + k^2 h_{ij} = 0$$
(9)

- Phenomenological mass models following LVK [ApJ 949 (2023) 2, 76]
- Spectral siren: $-2.2 \le \nu \le 3.7$ at 90% C.I.
- An oder of magnitude tighter than the bound from bright siren: $-75.3 \le \nu \le 78.4$