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Pulsar and PTA
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@ Pulsars are highly magnetized, rotating neutron stars that emit regular pulses of
electromagnetic radiation.

o GWs can cause tiny distortion in spacetime inducing variations in the time of
arrivals (ToAs).

o A pulsar timing array (PTA) pursues to detect nHz GWs by regularly monitoring
ToAs from an array of the ultra rotational stable millisecond pulsars.
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PTAs in operation

IPTA: PPTA + EPTA + NANOGrav + InPTA
Observers: CPTA, MeerTime
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Timing residual induced by a GWB

@ Redshift
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@ Timing residual in frequency-domain
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o Antenna pattern
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@ Assume the GWB is isotropic, unpolarized, and stationary
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@ Spectrum of GWB
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o Hellings & Downs correlations for fL > 1 (short-wavelength approximation)
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The stochastic signal in PTAs
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Gabriella Agazie, et al., ApJL (2023); Daniel Reardon, et al. ApJL (2023)
J. Antoniadis, et al., A&A (2023); Heng Xu, et al., RAA (2023)
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SIGWs can explain the PTA signal.
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Figure 2. Bayes factors for the model comparisons between the new-physics interpretations of the signal considered in this
work and the interpretation in terms of SMBHBs alone. Blue points are for the new physics alone, and red points are for the
new physics in combination with the SMBHB signal. We also plot the error bars of all Bayes factors, which we obtain following
the bootstrapping method outlined in Section 3.2. In most cases, however, these error bars are small and not visible.

Adeela Afzal, ApJL (2023)
see also Zhi-Qiang You, Zhu Yi, You Wu, 2307.04419
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Scalar-Induced Gravitational Waves (SIGWs)

@ Primordial perturbations can be generated by quantum fluctuations during
inflation.

@ Metric perturbation in Newtonian gauge

ds? = a? {7(1 +24)dn® + |(1 — 2¢)8;; + hﬂ dxidxﬂ'} , (1)

where ¢ = ¢(1) and hij = hg) are the scalar and tensor perturbations,

respectively.

o Primordial scalar perturbation can be the source of SIGWs, as well as primordial
black holes (PBHs).
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Primordial black holes (PBHs)

“s. Horizon Scale

@ PBHs are formed in the early universe by gravitational
collapse of primordial density perturbations

o PBH mass can span many orders ..~ primordial
¢ Perturbation

t _ t
TPBH ~ &~ 1071 (10723) Mo (2)

o PBHs survived from Hawking radiation can be DM
candidates.

@ PBHs can explain LVK BBHs.
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SIGW up to 3rd order
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Constrain SIGWs with NANOGrav 11-yr data set
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Non-Gaussianity

@ The local-type non-Gaussian curvature perturbations:
R() = Ra(¥) + P (RE(@) — (RE(@)) 3)

@ The effective curvature power spectrum

oo 14+v
PNCG = Pp(k)+ F2, | dv / du w. (4)
0 1—v] 2utv
@ The energy density of GWs
Qaw (k / / duTPgG(uk) G (uk), (5)

where the transfer function 7 = T (u, v) is given by

3
T (u,v) = 1091058 [41}2—(1) —u +1)] (v? +u2—3)2

y {{(02+u23)ln(‘m

472 (U2+’LL2 —3)29(v+u—\/§)}.
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Non-Gaussianity

@ Power spectrum

112 *
Pr(k) = —2—exp (—1 L )) . (7)

@ The PBH mass fraction at formation time
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@ The total abundance of PBHs in the dark matter at present
Q o M\ "2
feen = BT — 97 x 108/ dln M x (—) B(M). (10)
QopMm —oo Mg
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log1o(f+/Hz)
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o |Fhi| <139
e —13.9 < FnL S —0.1 when further requiring fppg S 1.

Lang Liu, ZCC, Qing-Guo Huang, 2307.01102
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Implications

@ The constraints on Fyr, have significant implications for Multi-field inflation
models.

@ For instance, adiabatic curvaton models predict that

5 5rp 5

5
=—-Fnp= — — — — =, 11
INL gINL = 6 3 (11)

where rp = 3pcurvaton /(3Pcurvaton + 4Pradiation) represents the "curvaton decay
fraction” at the time of curvaton decay.

@ Our constraint |Fny,| < 13.9 implies
D 2 0.05 (95%), (12)
and the further constraint that Fnp, < —0.1 yields
rp 2062 (95%), (13)

indicating that the curvaton field has a non-negligible energy density when it
decays.

o Our findings, therefore, pave the way to constrain inflation models with PTAs.
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Equation of state of the early Universe

@ The observed spectrum of SIGW per In k today is

4

_ Qr0h? gxr (Trn)\ [ gxs (Ten) \ ™ 2
Q h? ~1.62 x 107° ( A ) ( L L Q .
GwW,0 4.18 x 10-5 106.75 106.75 GW.rh
(14)

The SIGW spectrum for the scales k > k,y, is

k —2b roo 14+v

Y ( ) [Tao] " auT 0w PrwPr(),  (15)
krn 0 [1—v]|

where b = (1 — 3w)/(1 + 3w). And Qaw rh < (k/krn)? when k < kyp.

@ The primordial power spectrum

Pr(k) =

In2(k/ky)
o7 exp (f SA2 ) . (16)
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Implications

Reheating temperature T, < 0.2GeV.

o w < 0 is excluded at 95% confidence level.

w = 1/3 is consistent with the PTA data.

o w peaks at around 0.6.

@ Since during the oscillation of inflaton, w = % for an power-law potential
V(¢) oc ¢P, then, the constraint on w implies a $® bottom of the inflationary

potential.

Zu-Cheng Chen (BR{ERL) Probing SIGWs with PTAs Aug 21, 2023 23/



Overcoming excessive PBH production
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Summary

@ PTAs are opening a new window in the nHz band.

@ SIGWs can explain recent PTA signal.

@ PTA can explore the nature of the early Universe through SIGWs, including

o local-type non-Gaussianity of curvature perturbation
Lang Liu, ZCC, Qing-Guo Huang, 2307.01102

e equation of state of the early Universe
Lang Liu, ZCC, Qing-Guo Huang, 2307.14911
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