Constraints on Primordial-Black-Hole Population and Cosmic Expansion History from GWTC-3

Zu-Cheng Chen Shen-Shi Du, Qing-Guo Huang, Zhi-Qiang You JCAP 03 (2023) 024

Department of Astronomy, Beijing Normal University

Apr 17, 2023

Outline

- 2 Merger Rate of PBH Binaries
- 3 PBH and Hubble Parameter

PBH and Hubble Parameter

GWTC-3: 90 GW events (2 BNSs + 3 NSBHs + 85 BBHs)

What we know after LIGO-Virgo-KAGRA (LVK)

- There are many binary black holes (BBHs).
- They do have mass distribution.
- They can merge within Hubble time.

What we don't know after LVK

- Where do these BHs come from?
- What is the formation mechanism for these binaries?

The heavy BBHs, such as GW190521 with $m_1 = 85^{+21}_{-14}M_{\odot}$ and $m_2 = 66^{+17}_{-18}M_{\odot}$, challenge the astrophysical black hole (ABH) scenario.

Primordial black hole?

PBH and Hubble Parameter

Primordial black holes (PBHs)

- PBHs are formed in the early universe by gravitational collapse of primordial density perturbations *Carr, Hawking, MNRAS* (1974)
- PBH mass can span many orders

$$m_{\rm PBH} \sim \frac{t}{G} \sim 10^{-18} \left(\frac{t}{10^{-23}s}\right) M_{\odot}$$
 (1)

- PBHs survived from Hakwing radiation can be DM candidates.
- PBHs can explain LVK BBHs.

PBH and Hubble Parameter

Conclusion

Formation of PBH binaries

- PBHs distributed randomly in the early Universe.
- Two neighboring PBHs decouple from the expansion background due to gravitational interaction and form a bound system.
- The momentum provided by other PBHs and linear density perturbations prevent the binary from head-on colliding.
- PBH binaries coalescence due to GW radiation and will be detected by LVK.

Dynamics of a PBH binary

Equation of motion

$$\ddot{r} - \left(\dot{H} + H^2\right)r + \frac{m_b}{r^2}\frac{r}{|r|} = 0, \quad m_b = m_i + m_j.$$
(2)

• Semi-major axis a of the formed binary

$$a = \frac{0.1\bar{x}}{f_b} X^{\frac{4}{3}}, \quad X \equiv x^3/\bar{x}^3.$$
 (3)

• Torques by all of other PBHs and density perturbations

$$j_X \approx 0.5 \left(f^2 + \sigma_{\text{eq}}^2\right)^{1/2} \frac{X}{f_b}, \quad f_b = f_i + f_j.$$
 (4)

• Coalescence time Peters, Phys. Rev. (1964)

$$t_c = \frac{3}{85} \frac{a^4}{m_i m_j m_b} j^7.$$
 (5)

PBH and Hubble Parameter

Merger Rate Density

$$\begin{aligned} \mathcal{R}_{12}(t) &\approx 2.8 \cdot 10^6 \left(\frac{t}{t_0}\right)^{-\frac{34}{37}} f_{\text{pbh}}^2 (0.7 f_{\text{pbh}}^2 + \sigma_{\text{eq}}^2)^{-\frac{21}{74}} \\ &\times \min\left(\frac{P(m_1)}{m_1}, \frac{P(m_2)}{m_2}\right) \left(\frac{P(m_1)}{m_1} + \frac{P(m_2)}{m_2}\right) \\ &\times (m_1 m_2)^{\frac{3}{37}} (m_1 + m_2)^{\frac{36}{37}} \end{aligned}$$

- The fraction of PBHs in CDM is $f_{\rm pbh} \equiv \Omega_{\rm pbh}/\Omega_{\rm CDM}$.
- $\sigma_{\rm eq}^2 \sim 0.005^2$ is the variance of density perturbations of the rest DM.
- P(m) is the mass function (PDF)

•

$$\int_0^\infty P(m)dm = 1.$$

Distinguish PBHs from ABHs

- Subsolar mass BHs must be PBHs.
- High redshift BHs must be PBHs.
- Redshift evolution of merger rate

PBH and Hubble Parameter

Conclusion 0

Distinguish PBHs from ABHs

Zu-Cheng Chen, Qing-Guo Huang, JCAP (2020)

Hubble parameter H(z)

Hubble parameter is a fundamental observable that may help unveil the nature of dark energy and test general relativity.

- Hubble tension (crisis) at $\gtrsim 5\sigma$
 - $H_0 = 67.36 \pm 0.54 \ \mathrm{km} \ \mathrm{s}^{-1} \ \mathrm{Mpc}^{-1}$ from Planck 2018
 - $H_0=73.30\pm1.04~{\rm km~s^{-1}~Mpc^{-1}}$ from SH0ES team

• GWs provide an independent probe of H(z).

- GW experiments measure the luminosity distance $D_{\rm L}$ and redshifted masses $m_1^{\rm det},m_2^{\rm det}$

$$m_i = \frac{m_i^{\text{det}}}{1 + z \left(D_{\text{L}}; H_0, \Omega_{\text{m}} \right)} \tag{6}$$

$$D_L(z) = \frac{(1+z)}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_{\rm m}(1+z')^3 + (1-\Omega_{\rm m})}}$$
(7)

• Standard siren: infer the redshift of the GW with electromagnetic counterparts, and directly constrain the cosmological parameters, such as GW170817.

Dark siren

Even in the absence of electromagnetic observations, GWs alone can probe the expansion rate with the help of population properties, such as

- the peak of the mass distribution;
- the lower/upper mass cut-off;
- redshift distribution.

Masses and distance (redshift) distribution from GWTC-3.

Zu-Cheng Chen

- GWTC-3 contains ~ 2 times of GW events than GWTC-2
- LVK constrain the phenomenological ABH population and H_0 with GWTC-3 LVK, arXiv:2111.03604

• GWTC-3 (especially GW190521) is consistent with PBH

SCENARIO Zu-Cheng Chen, Chen Yuan, Qing-Guo Huang, PLB (2022)

Event	$R_{\rm LVK} [\rm Gpc^{-3}yr^{-1}]$	$\begin{array}{c} R_{\rm PBH} [{\rm Gpc}^{-3} {\rm yr}^{-1}] \\ {\rm case \ I} {\rm case \ II} \end{array}$
GW190521	$0.13\substack{+0.30\\-0.11}$	$0.12^{+0.11}_{-0.07} \ 0.16^{+0.11}_{-0.08}$

• We will infer H_0 with PBH model using GWTC-3.

PBH and Hubble Parameter

Population model

$$\begin{aligned} \mathcal{R}_{12}(t) &\approx 2.8 \cdot 10^6 \left(\frac{t(z)}{t_0}\right)^{-\frac{34}{37}} f_{\text{pbh}}^2 (0.7 f_{\text{pbh}}^2 + \sigma_{\text{eq}}^2)^{-\frac{21}{74}} \\ &\times \min\left(\frac{P(m_1)}{m_1}, \frac{P(m_2)}{m_2}\right) \left(\frac{P(m_1)}{m_1} + \frac{P(m_2)}{m_2}\right) \\ &\times (m_1 m_2)^{\frac{3}{37}} (m_1 + m_2)^{\frac{36}{37}} \end{aligned}$$

 $\Re(\theta|\Phi) = R_0 p(\theta|\Phi), \quad \theta = \{m_1, m_2, z\}, \quad \Phi \equiv \text{hyper parameter}$ (8)

Local merger rate R_0

$$R_0 = \int_0^\infty \int_0^\infty \Re(m_1, m_2, z = 0 | \Phi) dm_1 dm_2$$
 (9)

Detector frame population probability

$$p_{\rm pop}(\theta|\Phi) = \frac{1}{1+z} \frac{dV_{\rm c}}{dz} p(\theta|\Phi)$$
(10)

Hierarchical Bayesian Inference

$$\mathscr{L}(\mathbf{d}|\Phi) \propto N_{\exp}^{N_{obs}} e^{-N_{exp}} \prod_{i=1}^{N_{obs}} \frac{\int \mathscr{L}(d_i|\theta) R_{pop}(\theta|\Phi) d\theta}{\xi(\Phi)}$$

(11)

- $\mathbf{d} = (d_1, \dots, d_{N_{\mathrm{obs}}})$ are N_{obs} BBHs
- $\xi(\Phi)$ quantifies selection biases

$$\xi(\Phi) = \int P_{\rm det}(\theta) \, R_{\rm pop}(\theta | \Phi) \, \mathrm{d}\theta \approx \frac{1}{N_{\rm inj}} \sum_{j=1}^{N_{\rm found}} \frac{R_{\rm pop}(\theta_j | \Phi)}{p_{\rm draw}(\theta_j)}$$

where $N_{\rm inj}$ is the number of injections, $N_{\rm found}$ is the number of injections that are detected, and $p_{\rm draw}$ is the probability distribution from which the injections are drawn.

• $\mathscr{L}(d_i|\theta)$ is single event likelihood.

Bayes' theorem

Bayes factor

$$BF = \frac{\Pr\left(\mathscr{D} \mid \mathscr{M}_{1}\right)}{\Pr\left(\mathscr{D} \mid \mathscr{M}_{0}\right)}$$

Table 2. An interpretation of the Bayes factor in determining which model is favored, as given by Kass & Raftery (1995).

BF	$\ln \mathcal{BF}$	Strength of evidence
< 1	< 0	Negative
1 - 3	0 - 1	Not worth more than a bare mention
3 - 20	1 - 3	Positive
20 - 150	3 - 5	Strong
> 150	> 5	Very strong

Zu-Cheng Chen

Lognormal PBH mass function

$$P(m, \sigma_{\rm c}, M_{\rm c}) = \frac{1}{\sqrt{2\pi}\sigma_{\rm c}m} \exp\left(-\frac{\ln^2\left(m/M_{\rm c}\right)}{2\sigma_{\rm c}^2}\right)$$
(12)

- Associate with power spectra with a smooth symmetric peak.
- $M_{\rm c}$ and $\sigma_{\rm c}$ are the peak and width of the mass spectrum.
- $\Phi = \{H_0, \Omega_{\mathrm{m}}, \sigma_{\mathrm{c}}, M_{\mathrm{c}}\}$

Zu-Cheng Chen

PBH and Hubble Parameter

Conclusion

Power-law PBH mass function

$$P(m, M_{\min}) = \frac{1}{2} M_{\min}^{1/2} m^{-3/2} \Theta(m - M_{\min})$$
(13)

- Associate with a broad or flat power spectrum.
- M_{\min} is the lower mass cut-off.
- $\Phi = \{H_0, \Omega_{\mathrm{m}}, M_{\mathrm{min}}\}$

Critical collapse (CC) PBH mass function

$$P(m,\alpha,M_{\rm f}) = \frac{\alpha^2 m^{\alpha}}{M_{\rm f}^{1+\alpha} \Gamma(1/\alpha)} \exp\left(-(m/M_{\rm f})^{\alpha}\right)$$
(14)

- Associate with a monochromatic power spectrum.
- With an upper cut-off $\mathscr{O}(M_{\mathrm{f}})$, but no lower mass cut-off.

•
$$\Phi = \{H_0, \Omega_{\mathrm{m}}, \alpha, M_{\mathrm{f}}\}$$

Zu-Cheng Chen

Parameter	Description	Prior
	Merger rate evolution	
R_0	Local merger rate of PBH binaries in $\text{Gpc}^{-3} \text{yr}^{-1}$.	$\mathcal{U}(0,200)$
	Cosmological parameters	
H_0	Hubble constant in $\mathrm{km}\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$.	$\mathcal{U}(10, 200)$ (Wide prior) $\mathcal{U}(65, 77)$ (Restricted prior)
$\Omega_{\rm m}$	Present-day matter density of the Universe.	$\mathcal{U}(0,1)$ (Wide prior) $\delta(0.315)$ (Restricted prior)
	Lognormal PBH mass function	
$M_{ m c}$	Peak mass in M_{\odot} .	$\mathcal{U}(5,50)$
$\sigma_{ m c}$	Mass width.	U(0.1, 2)
	Power-law PBH mass function	
M_{\min}	Lower mass cut-off in M_{\odot} .	U(3, 10)
	Critical collapse (CC) PBH mass function	on
$M_{ m f}$	Horizon mass scale in M_{\odot} .	$\mathcal{U}(5,50)$
α	Universal exponent.	$\mathcal{U}(0.5,5)$

Introduction 000	Merger Rate of PBH Binaries 00000	PBH and Hubble Parameter 00000000000000000000000000000000000	Conclusion O
	PBH mass model	$\log_{10} \mathscr{B}$	
	Lognormal	2.99	
	Power-law	0	
	СС	3.12	

Table: \log_{10} Bayes factor between different mass models and the Power-law mass model, for the case of a flat ΛCDM cosmology with wide priors. Power-law PBH mass model is strongly disfavored.

PBH mass model	$\log_{10} \mathscr{B}$
Lognormal	-0.02
Power-law	-0.11
СС	0.20

Table: \log_{10} Bayes factor comparing runs that adopt the same PBH mass model but different cosmologies: Wide priors versus Restricted priors. No evidence in favor of any of these two cosmological models.

The PBH mass functions are well constrained.

PBH and Hubble Parameter

Local merger rate and $f_{ m pbh}$

The stellar-mass PBHs cannot dominate CDM.

Zu-Cheng Chen

PBH and Cosmic Expansion History

The constraints on cosmological parameters are weak and informative.

PBH and Hubble Parameter

Combined with GW170817

PBH and Hubble Parameter

ABH+PBH

The ABH+PBH model can better describe the mass distribution, thus improving the precision to constrain the Hubble constant.

Zu-Cheng Chen

PBH and Cosmic Expansion History

Conclusions

- PBH mass distribution can be well constrained.
- The constraints on standard ΛCDM cosmological parameters are rather weak and in agreement with current results.
- When combining with GW170817, the Hubble constant H_0 is constrained to be $69^{+19}_{-8} \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$ and $70^{+26}_{-8} \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$ for the lognormal and critical collapse mass models, respectively.
- With increased BBH events, the mixed ABH+PBH model can provide a robust statistical inference for both the population and cosmological parameters.